Berkeley Lab

Advancing Temperature Profiling Systems to Better Understand Changes in Soil and Snow

General overview of the Distributed Temperature Profiling (DTP) system (left) and example of collected soil and snow temperature data (right). The DTP system can be assembled in various lengths and provides measurements of snow thickness and temperature, soil temperature, and the depth of frozen and thawed soil layers.

The Science

Measuring soil and snow temperature at varying depths with high accuracy is critical to better predict and understand water and carbon fluxes. Temperature measurements of layers throughout snow and soil depths help scientists understand temperature fluctuations, heat and water fluxes, frozen and thawed soil depth, and snow thickness – all of which are essential to understand as earth’s temperature changes. However, obtaining these measurements in numerous locations with a high level of detail is difficult due to their total cost, the challenge of obtaining accurate measurements, and the potential disturbance caused by installation. This study presents the development and importance of a novel Distributed Temperature Profiling (DTP) system that makes it possible to measure temperature of soil and snow at varying depths in greater detail to address these challenges.

The Impact

With climate warming, soil temperature and snowpack is predicted to change, which can largely impact the global carbon cycle, terrestrial ecosystem functioning, and freshwater resources. Scientists developed a DTP system and demonstrated its potential for measuring soil and snow temperature at varying depths with a newly developed level of detail, high accuracy, and low cost, while also minimizing energy consumption and the effects of installation. Soil and snow temperature data are gathered with a high spatial resolution to capture both changes in snow depth and the thickness of soil freezing and thawing layers. This development can help improve scientists’ ability to predict and understand the heat and water fluxes in snow and soil across watershed scales, which is essential for assessing and managing water resources and how the global carbon cycle may be impacted by soil warming.


Studying ecosystems on multiple scales is required to better understand the complex behavior of the environment in a changing climate. To study thermal dynamics and temperature distribution in snowpack and soil, scientists have developed a DTP system – an efficient and easy-to-install sampling method that provides detailed and accurate temperature measurements at varying depths with a low cost.

The system provides depth-profiles of temperature measurements at newly detailed resolutions, and also enables automated data acquisition, management, and wireless transfer to other devices and computers. A novel calibration approach confirms an accuracy of up to +/– 0.015 ºC, which will allow scientists to better understand how temperature varies in the depth of snow and soil, enabling improved predictions of how rising temperatures may influence these resources and ultimately ecosystem health and functioning. By using the system in various environments, scientists showed that the DTP system reliably captures temperature dynamics throughout snow depth and the depth of frozen and thawed soil layers. This study advances understanding of how the intensity and timing in surface processes impacts below-ground temperature distribution. The development of the DTP system is an important step toward optimizing environmental data accuracy and modeling at low cost.


Dafflon, B., Wielandt, S., Lamb, J., McClure, P., Shirley, I., Uhlemann, S., Wang, C., Fiolleau, S., Brunetti, C., Akins, F.H., Fitzpatrick, J., Pullman, S., Busey, R., Ulrich, C., Peterson, J. and Hubbard, S.S., A distributed temperature profiling system for vertically and laterally dense acquisition of soil and snow temperature. The Cryosphere 16(2), 719-736, 2022.